当前位置: 首页 >> 人才培养 >> 研究生培养 >> 论文答辩 >> 正文

硕士学位论文答辩

发布于:2018/05/25

答辩公告

论文题目

基于车辆碰撞事故反求的脑损伤评价研究

答辩人

刘启明

指导教师

韩旭教授、刘杰副教授

答辩委员会

主席

方棋洪教授

学科专业

机械工程

学院

机械与运载工程学院

答辩地点

工程楼529

答辩时间

2018年5月29日

下午2:30

学位论文简介

本文针对车辆碰撞事故反求、脑组织材料参数识别、颅脑损伤评价与预测以及乘员约束系统防护性能的改进进行了一定的探究和尝试,主要的研究成果如下所述:

(1)考虑相关性的车辆碰撞事故不确定性反求。采用Nataf转化技术,实现了对车辆碰撞事故中相关变量向独立变量的转换;基于三点估计法和逆Nataf转化可以将不确定性反问题转化成几个的确定性反问题。在相关性条件下,采用INT-PEM不仅实现了车辆碰撞事故的重建,而且大大降低了反求过程的计算成本。结合反求所得碰撞参数的统计矩,利用最大熵原理,得到碰撞参数的概率密度函数。

(2)基于单轴压缩试验的脑组织粘-超弹性材料参数识别。由于脑组织软、粘的材料特性,很难制作标准的脑组织试样,通常试样形状非常不规则。为此,基于激光扫描技术建立特定试样的脑组织有限元模型,并结合无约束单轴压缩试验数据,提出了一种脑组织粘-超弹性材料参数的计算反求方法。

(3)基于ANN-L的脑损伤评价和预测。根据数据库中的汽车碰撞试验数据,基于Spearman秩相关分析各个运动参量或损伤评价准则与脑损伤量之间的相关性,并获知最大合成速度、最大合成加速度、最大角速度以及基于旋转的脑损伤评价准则与CSDM之间有很强的相关性。采用优化策略得到各运动参量的的最佳权重,进而建立新的颅脑损伤评价准则。

(4)基于损伤评价准则的乘员约束系统多目标优化。根据所提敏感性度量方法的分析结果,并考不确定性因素的影响,以损伤评价准则HIC和BIC为优化目标,以BrIC和RIC为约束,采用区间多目标优化算法对乘员约束系统进行优化设计。

主要学术成果

期刊论文:

[1] Liu Q.M, Li Y.J, Cao L.X, Lei F, & Wang Q. Structural design and global sensitivity analysis of the composite B-pillar with ply drop-off. Structural & Multidisciplinary Optimization, 2017(1):1-11.

[2] Liu Q.M, Liu J, Guan F.J, Han X, Cao L.X, & Shan K.Z. The identification of hyper-viscoelastic properties of brain tissue based on the combination of inverse technique and experiment. Journal of Materials Science: Materials in Medicine. (Under Review, SCI).

[3] Liu J, Liu Q.M, Jiang C, Zhang Z, & Han X. A new global sensitivity measure based on derivative-integral and high-order sensitivity decomposition. Optimization Engineering.(Revised, SCI).

[4] Liu Q.M, Liu J, Wu X.F, Cao L.X, Han X. Reconstruction of vehicle collision accident considering uncertainties with correlation. Accident Analysis and Prevention. (Submitted, SCI)

[5] Zhang Z.Y, Hou S.J, Liu Q.M, Han X. Winding orientation optimization design of composite tubes based on quasi-static and dynamic experiments. Thin-Walled Structures, 2018, 127:425-433.

[6] Zeng F, Xie H, Liu Q.M, Tan W. Design and optimization of a new composite bumper beam in high-speed frontal crashes. Structural & Multidisciplinary Optimization, 2016, 53(1):115-122.

[7] Wang H.Y, Xie H, Liu Q.M, Shen Y.F, Wang P.J, & Zhao L.C. Structural topology optimization of a stamping die made from high-strength steel sheet metal based on load mapping. Structural & Multidisciplinary Optimization, 2018(9):1-16.

[8] Chen C, Hu D.A, Liu Q.M.Evaluation on the interval values of tolerance fit for the composite bolted joint. Composite Structures. (Under Review, SCI).

[9] Wang H.Y, Xie H, Liu Q.M, Shen Y. Multi-objective optimization on crashworthiness of front longitudinal beam (FLB) coupled with sheet metal stamping process. Thin-Walled Structures. (Under Review, SCI).

[10] Fu C.M, Jiang C, Chen G.S, Liu Q.M. An adaptive differential evolution algorithm with an aging leader and challengers mechanism. Applied Soft Computing, 2017, 57: 60-73.

[11] Cao L.X, Liu J, Han X, Jiang C, & Liu Q.M. An efficient evidence-based reliability analysis method via piecewise hyperplane approximation of limit state function. Structural & Multidisciplinary Optimization, 2018(8):1-13.

[12] Yu N.H, Shang J.Z, Cao Y.J, Ma D.X, & Liu Q.M. Comparative Analysis of Al-Li Alloy and Aluminum Honeycomb Panel for Aerospace Application by Structural Optimization. Mathematical Problems in Engineering, 2015, 2015(3):1-12.

授权发明专利:

[1] 刘启明, 杨旭静, 韩旭等.一种加热均匀且耐高温的复合材料生产系统. 中国专利. 201410163353.3, 2016-04-27.

[2] 刘启明, 杨旭静, 韩旭等.教学实验用GMT片材生产系统. 中国专利. 201410163384.9, 2016-04-27.

会议论文及报告摘要:

[1] Liu Q.M, Liu J.A new global sensitivity analysis method to quantify the importance of design parameters. Advanced Design Concepts and Practice (ADCP). Hangzhou, 2015.

[2] Liu Q.M, Liu J.The Identification of the Constitutive Model Parameters of White Matter of Brain Tissue. The 8th International Conference on Computational Methods (ICCM2017). Guilin, 2017.